
ALGORITHMS IN ACTION - SOLVING SAT (RANDOMIZED)

TOMER BINCOVICH

1. introduction

We present two randomized algorithms for the 3-SAT problem (the PPZ algo-
rithm is more general and solves the k-SAT problem), then state two conjectures
about lower bounds.

2. schöning’s algorithm

2.1. The algorithm. This algorithm is based on a random walk. It consists of
running a “try” procedure (which tries to find a satisfying assignment) s times,
and if no run succeeded in finding a satisfying assignment, unsat is returned. The
algorithm:

Walk3SAT(F: clause set):
repeat s times:

A← random assignment
repeat 3n times:

if A is satisfying return sat
choose C ∈ F which is not satisfied
choose uniformly at random a literal l in C
flip the value of the variable of l in A

return unsat

Or, more concisely:
Walk3SAT(F: clause set)
repeat s times: “try”
return unsat

We remark that if the boolean formula (with the clause set F) is unsatisfiable, the
algorithm always returns unsat, while if the formula is satisfiable, the algorithm
may return unsat with some probability. Next we bound this probability.

2.2. The success probability of a try. Assume the formula is satisfiable. Fix
some satisfying assignment A∗, and let At be the assignment after t steps of the
try procedure. Note that A0 is the initial random assignment. Let Xt = d(At, A∗),
meaning the number of variables that are given different values according to At and
A∗. It can be seen that X0 ∼ Bin

(
n, 1

2
)
. A try is successful if Xt = 0 for some

t ≤ 3n: it means that At = A∗, which says we found a satisfying assignment (pay
attention that the probability for a try to succeed can be higher; here we analyze
the probability to find a specific satisfying assignment - A∗, but there can be more
the just one).

Based on Lectures by Haim Kaplan and Uri Zwick.
1

ALGORITHMS IN ACTION - SOLVING SAT (RANDOMIZED) 2

Let us focus on the variable Xt. Xt changes by ∓1 each time we change the
assignment, and decreases with probability ≥ 1

3 (in every unsatisfied clause, at
least 1 out of the 3 variables gets a different value than in A∗ - otherwise the clause
would be satisfied). However, the exact probability depends on the history.

As A∗ is a satisfying assignment, there exists for every clause a literal satisfied
by A∗. Mark such a literal for each clause. Define the variable Yt: Y0 = X0, Yt
changes by −1 if the algorithm picks the marked literal (of the unsatisfied clause
C), otherwise it changes by +1.

Lemma 1. Yt ≥ Xt.

Proof. By induction. First we have Y0 = X0. It remains to show that whenever
Xt goes up, so does Yt (so if we have inductively that Yt ≥ Xt, if Xt changes by
+1 so does Yt, and otherwise Xt changes by −1, and Yt cannot go down by more
than 1. In each case the inequality holds). But Xt goes up only when we flip a
variable whose values in At and A∗ are the same. Assume to the contrary that Yt
goes down, so we picked the marked literal, and by definition it is satisfied by A∗.
But as seen, the chosen variable got the same value as in A∗, which implies that
the chosen clause was satisfied - a contradiction. �

Thus, p = Pr [∃t ≤ 3n, Yt = 0] ≤ Pr [∃t ≤ 3n,Xt = 0], and we want a lower
bound on p. Yt describes a random walk on the line (of non-negative integers),
with probability 1

3 to go left and 2
3 to go right.

We wish to bound pj = Pr [∃t ≤ 3n, Yt = 0 |Y0 = j]. We can compute
qj = Pr [∃t, Yt = 0 |Y0 = j], and pj ≤ qj , but we actually need a lower bound:

q0 = 1

q1 = 1
3 + 2

3 (q1)2 ⇒ q1 = 1
2

6qj = 1
3qj−1 + 2

3qj+1 ⇒ qj+1 = 3
2qj −

1
2qj−1 ⇒ qj =

(
1
2

)j
so pj ≤ qj =

(1
2
)j . We also have, for every k such that j + 2k ≤ 3n:

pj ≥
(
j + 2k
k

)(
2
3

)k (1
3

)j+k
since this is the probability that we have j + k moves left and k move right, in a
sequence of j + 2k moves. Now:

pj ≥
(

3j
j

)(
2
3

)j (1
3

)2j

Stirling:
√

2πm
(m
e

)m
≤ m! ≤ 2

√
2πm

(m
e

)m
(

3j
j

)
= (3j)!
j! (2j)! ≥

√
2π3j

(3j
m

)3j

2
√

2πj
(
j
e

)j 2
√

2π2j
(2j
e

)2j =
√

3
8
√
πj

(
27
4

)j

pj ≥
(

3j
j

)(
2
3

)j (1
3

)2j
≥ c√

j

(
27
4

)j (2
3

)j (1
3

)2j
= c√

j

(
1
2

)j

ALGORITHMS IN ACTION - SOLVING SAT (RANDOMIZED) 3

and we get
c√
n

(
1
2

)j
≤ c√

j

(
1
2

)j
≤ pj ≤ qj =

(
1
2

)j
(the leftmost inequality holds even for j = 0).
Now, we return to p:

p = Pr [∃t ≤ 3n, Yt = 0] =
n∑
j=0

Pr[Y0 = j]pj ≥
n∑
j=0

(
n

j

)(
1
2

)n
c√
n

(
1
2

)j
=

=
(

1
2

)n
c√
n

 n∑
j=0

(
n

j

)(
1
2

)j =
(

1
2

)n
c√
n

 n∑
j=0

(
n

j

)(
1
2

)j
1n−j


=
(

1
2

)n
c√
n

(
1
2 + 1

)n
=
(

1
2

)n
c√
n

(
3
2

)n
= c√

n

(
3
4

)n
2.3. Analysis of the full algorithm. We set s = α

p (α is a constant; recall
the Walk3SAT algorithm in section 2.1), and conclude that if there is a satisfying

assignment we fail to find it with probability ≤ (1− p)
α
p

1−x≤e−x︷︸︸︷
≤ e−α. The running

time is O∗
(

1
p

)
= O∗

((4
3
)n) (i.e. we ignore polynomial factors).

3. paturi-pudlak-zane algorithm

3.1. The algorithm. This algorithm resembles the SAT solver with unit propaga-
tion, but traverses the variables in a random order, and pick a random value when
cast with a decision.

PPZ(F: clause set):
repeat s times:

Pick random π ∈ Sn
x← ∅ (the assignment)
for i = 1 to n:

if
(
xπ(i)

)
∈ F then

{xπ(i) = 1; F ← F
[
xπ(i) = 1

]
}

else if
(
x̄π(i)

)
∈ F then

{xπ(i) = 0; F ← F
[
xπ(i) = 0

]
}

else {pick α ∈ {0, 1} at random;
xπ(i) = α; F ← F

[
xπ(i) = α

]
}

if x is satisfying return sat
return unsat

Again, we “try” to find a satisfying assignment s times (restarting after each time),
and we will prove a lower bound on the success probability of a try.

3.2. Analysis of the full algorithm. As before, let p be the probability that a
try finds a specific satisfying assignment (assuming the formula is satisfiable). We
again set s = α

p , and remark that we fail to find the assignment when there is one
with probability (1− p)t ≤ e−α.

Theorem 2. For k-SAT, p ≥
(

1
21− 1

k

)n
.

ALGORITHMS IN ACTION - SOLVING SAT (RANDOMIZED) 4

So we repeat the try procedure ≈
(

2(1− 1
k)
)n

times. The values for small k are:

k 3 4 5 6 7 8

21− 1
k 1.58 1.68 1.74 1.78 1.81 1.83

3.3. Proof of the theorem - the success probability of a try. Fix a satisfying
assignment x. We call a variable critical if when we flip its value, the assignment
we get (from x) is no longer satisfying. Let j (x) be the number of critical vars,
and s (x) = n− j (x).

Lemma 3.
∑
x∈sat

1
2s(x) ≥ 1.

Proof. Induction on n (the number of vars).
Base: n = 1.
Case 1: Only one satisfying assignment x. Then flipping the value of the only

variable leads to a non-satisfying assignment, so j (x) = 1, s (x) = 0.
Case 2: Two satisfying assignments x1, x2, so the value of the variable does not

matter, and
j
(
x1) = j

(
x2) = 0

s
(
x1) = s

(
x2) = 1

Induction step: split the satisfying assignments into two sets

sat0 = {x ∈ S |xn = 0}

sat1 = {x ∈ S |xn = 1}
Case 1: sat0 = ∅ (the case sat1 = ∅ is analogous). There is a 1-1 correspondence

between assignments x and assignments x′ of F [xn = 1] (xn must be 0 in x), xn is
critical in x so sF [xn=1]

(
x′
′
)

= s (x). Apply the induction hypothesis to F [xn = 1].
Case 2: sat0 6= ∅ and sat1 6= ∅. There is a 1-1 correspondence between as-

signments x ∈ sat0 and assignments x′ of F [xn = 0], so sF [xn=0] (x′) ≥ s (x) − 1
(as xn may not be critical in x). Similarly, there is a 1-1 correspondence between
assignments x ∈ sat1 and assignments x′ of F [xn = 1], so sF [xn=1] (x′) ≥ s (x)− 1.
Thus ∑

x∈sat

1
2s(x) =

∑
x∈sat0

1
2s(x) +

∑
x∈sat1

1
2s(x)

≥
∑

x′∈sat(F [xn=0])

1
2sF [xn=0](x′)+1

+
∑

x′∈sat(F [xn=1])

1
2sF [xn=1](x′)+1 ≥

1
2 + 1

2 = 1

�

In addition, let r (x, π) ≤ j (x) be the number of critical vars that are last in
some critical clause (a clause that becomes unsatisfied when we flip the value of
a critical var) by π (i.e. vars xπ(i) such that when the algorithm gets to xπ(i) its
value is forced to be the correct value by unit propagation). Observe that the only
way that we find x when using π is to guess correctly the values for the vars which

ALGORITHMS IN ACTION - SOLVING SAT (RANDOMIZED) 5

are not counted in r (x, π), and the algorithms is then forced to set the other values
correctly. Thus

P [Alg finds x when using π] = 1
2n−r(x,π)

P [Alg finds x] =
∑
π

P [Alg finds x when using π] 1
n!

=
∑
π

1
2n−r(x,π)

1
n! = 1

2n
∑
π

1
n! 2

r(x,π) = 1
2nE

(
2r(x,π)

)
≥ 1

2n 2E(r(x,π))

The last inequality is due to Jensen’s inequality (as the function 2x is convex).

E (r (x, π)) =
∑

xi critical
P (xi last in critical clause in π)

≥
∑

xi critical

1
k

= j (x)
k

And

P [Alg finds x] ≥ 1
2n 2E(r(x,π)) ≥ 1

2n 2
j(x)
k

≥ 1
2n−nk

2
j(x)
k −

n
k

≥
(

1
21− 1

k

)n 1
2
s(x)
k

≥
(

1
21− 1

k

)n 1
2s(x)

Finally

p =
∑
x∈sat

P [Alg finds x] ≥
(

1
21− 1

k

)n ∑
x∈sat

1
2s(x)

≥
(

1
21− 1

k

)n
�

3.4. Summary. For 3-SAT we get running time of 1.58n. It was improved (PPSZ)
to 1.36n, and the current record is 1.308n. The first algorithm we saw (section 2.1)
whose running time is about 1.33n beats PPZ.

4. eth and seth

Two famous conjectures that capture the following beliefs (Exponential Time
Hypothesis and its Strong variant):
(ETH) There is no algorithm for 3-SAT that runs in 2o(n) time
(SETH) There is no algorithm for SAT that runs in (2− ε)n time
It can be shown that SETH implies ETH, and those conjectures have been used to
derive many (conditional) lower bounds.

