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1 k-centers

Given a set of n points A of some metric space X, find a set C of k points
in X, such that we minimize max

x∈A
d(x,C).

One can think of it as covering A with k cycles of the same radius while
trying to minimize that radius.
we will use an approximation algorithm:

Algorithm 1 k centers approximation

pick an arbitrary point x1 as the first center.
For j = 2, ..., k pick xj as the point farthest away from the set {x1, ..., xj−1}.

Denote r as the algorithm’s radius and OPT as the optimal radius.

Theorem 1.1 r
2
≤ OPT

Proof 1.1 Let x ∈ A be the point that achieves d(x,C) = r, were
C = {x1, ..., xk} the centers. By definition: ∀i d(x, xi) ≥ r.
Because x wasn’t chosen as a center (and the fact that he is far from all of
the centers) we get: ∀i 6= j d(xi, xj) ≥ r. Therefore x, x1, ..., xk form a
k + 1 clique of point with distance greater than r. If we map those points
into the optimal solution then surely 2 points y, z will be mapped to the
same center c. Note that if d(c, y) < r

2
,d(c, z) < r

2
then d(y, z) < r, a

contradiction. This derives OPT ≥ r
2
.
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Figure 1: left - The k centers and x
right - ”impossible” triangle

2 k-medians

Given a set of n points A of some metric space X, find a set C of k points
in X, such that we minimize

∑
x∈A

d(x,C).

One can notice that the answer to the 1-median problem in R is exactly
the median of the input points!
Here is a local search algorithm for the k-medians problem:

Algorithm 2 k centers approximation

Start with an arbitrary set of k centers.
Swap a center with some point which is not a center if the sum of the
distances decreases.

Denote the optimal centers as o1, ..., ok and the local search algorithm
centers as x1, ..., xk.

Theorem 2.1 Assume that ∀i oi is mapped to xi (the mapping of an
optimal center to it’s closest local search center forms a matching), then
L ≤ 3OPT .

Proof 2.1 ∀1 ≤ i, j ≤ k define Ai,j as the points which are closest to oi

and xj (with the respective mappings). Also define ∀1 ≤ i ≤ k Bi =
k⋃

j=1

Ai,j

and Ci =
k⋃

j=1

Aj,i. Consider the swaps defined by this matching. By our local

search definition we know COST (L− x1 + o1)− COST (L) ≥ 0. Now we
will present classification of A into the new centers (division of A into k
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group corresponding to the centers, if a point is in a center’s group then we
”think” of it as that center is the closest to that point - even if it’s not true
[it will give us an upper bound on the cost]):
o1’s will be B1.
∀2 ≤ i ≤ k we classify to xi the following set: (Ci ∪ Ai,1) \ A1,i.
Note that ∀2 ≤ i ≤ k and ∀x ∈ Ai,1 it holds that:

d(x, xi)−d(x, x1) ≤ d(x, oi)+d(oi, xi)−d(x, x1) ≤ d(x, oi)+d(oi, x1)−d(x, x1) ≤ 2d(x, oi)

Therefore,

COST (L−x1+o1)−COST (L) ≤ COSTOPT (B1)−COSTL(B1)+2COSTOPT (Ci)

Summing it for i = 1, .., k and we indeed get
0 ≤ OPT − L + 2OPT = 3OPT − L, and we won!

Figure 2: left - The matching between optimal centers to local search centers
right - difference between distances from centers (case we swap o2 with x2)

3 k-means

Given a set of n points A of some metric space X, find a set C of k points
in X, such that we minimize

∑
x∈A

d2(x,C).

One can notice that the answer to the 1-median problem in R is exactly
the average of the input points!
Here is a local search algorithm for the k-medians problem:

Algorithm 3 k means approximation

Start with an arbitrary set of k centers.
Assign each point to its closest center
Recalculate centers - the new centers are the means of the clusters
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Note that if we look on 3-means in R then we can’t guarantee any
approximation factor. Figure 3 shows an example: taking 3 lines of
distances x, z, y. if x < y � z then one can make the local search result y2

2

while the optimal solution is x2

2
.

Figure 3: local solution vs. optimal solution

Running time: Note that no 2 partition can happen in 2 different
iteration, this derives an upper bound on the running time of O(kn).

3.1 Voronoi diagram

The Voronoi diagram of a set of points p1, p2, . . . , pn is a partition of the
plane to n cells, cell i contains all points closest to pi.

3.2 Voronoi partition

A Voronoi Partition of a set of points p1, p2, . . . , pn is a partition of the points
which is consistent with the voronoi diagram of the centers (of each part).

Running time: Note that no 2 voronoi partitions can appear twice,
therefore the running time is bounded by the number of voronoi partition
to the points.
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Figure 4: left - voronoi diagram.
right - voronoi partion
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